The Theory and Computation Group in molecular and biochemical sciences at UCLA has been formed to bring together scientists who are developing and applying computation and simulation for the solutions of chemical and biological problems.
Theory, mathematics, and computation comprise a fundamental research core of physical and life sciences, and UCLA excels in all areas, from quantum and statistical mechanics through bioinformatics.
The Theory and Computation graduate program involves training in the whole broad field, but also concentration on research on one of the forefront fields of theory and computation.
Faculty Research Summaries
Professor Anastassia N. Alexandrova
Professor Anastassia Alexandrova and her group work on theory and computation of materials, ranging from novel catalytic interfaces to artificial enzymes, and to small clusters in the gas phase and variety of other contexts. The group explores the last frontier of inorganic chemistry, in terms of their electronic structure and chemical bonding. They also develop new computational methods for multi-scale modeling of complex materials in realistic conditions relevant to their use in technology,
Professor Paula L. Diaconescu
The Diaconescu group designs metal complexes supported by ferrocene-based chelating ligands. All projects under investigation harness ferrocene’s unique electronic properties to impart unusual reactivity in the activation of small molecules and to generate biodegradable polymers.
Professor David S. Eisenberg
Professor David Eisenberg and his research group focus on protein interactions. In their experiments they study the structural basis for conversion of normal proteins to the amyloid state and conversion of prions to the infectious state. In bioinformatic work, they derive information on protein interactions from genomic and proteomic data, and design inhibitors of amyloid toxicity.
Professor William M. Gelbart
Professor William Gelbart directs a research program, with Professor Charles M. Knobler, which features the interplay between a range of theoretical and experimental approaches to elucidating the physics of viral infectivity. Differences between the life cycles of DNA and RNA viruses — in particular, how their genomes are packaged into and released from virus particles — are investigated in terms of the differences between DNA and RNA molecules as physical objects. The tools and methods range from the statistical mechanics of simple models to in vitro systems consisting of a few purified components and to cell culture studies.
Professor James K. Gimzewski
Professor James Gimzewski focuses on nanoscale science and technology with an emphasis on mechanics on the nanoscale. His research consists of: (1) Nanomechanical dynamics and nanoarchitechtonics of living cells. This work is related to cancer, the action of drugs, environmental factors and other mutations in individual cells. His research pioneers the role of mechanics and cellular motion with the aim to develop new forms of medical diagnoses at the single cell level. (2) Use of biochemistry and AFM to gene profile DNA on the single molecule level. (3) Production of compact high energy beams of neutrons, photons, ions, and electrons using point source emitters coupled with piezoelectric and pyroelectric effects.
Professor Kendall N. Houk
Professor Ken Houk is the Saul Winstein Chair in Organic Chemistry. His group develops qualitative rules to understand reactivity, models complex organic reactions with computational methods, and experimentally tests the predictions of theory. Current interests include the computational design of enzymes to catalyze unnatural reactions, the quantitative modeling of stereospecific reactions used in synthesis, mechanisms and selectivities of organometallic reactions, studies of mechanisms and dynamics of cycloaddition reactions. especially bioorthogonal cycloadditions, the design, synthesis, and reactions of hemicarcerands and other host-guest complexes, and the computational design of organic materials for photovoltaic devices.
Professor Kalli Kappel
The Kappel Lab investigates how RNA and protein sequences encode molecular and cellular functions, with a focus on how RNA-binding proteins regulate RNA metabolism. To do this, the lab takes two integrated approaches: (1) developing high-throughput experimental methods — especially utilizing imaging and sequencing technologies — to map multiscale structures and function for large libraries of protein and RNA sequences; and (2) using machine learning and computational biophysical methods to build predictive sequence-structure-function models from large-scale datasets.
Professor Abby Kavner
Professor Kavner’s experimental research program seeks to understand equilibrium and transport properties of materials under extreme conditions of high pressure and high temperature. In addition, the Kavner research group investigates how kinetic isotope effects can help illuminate overall reaction kinetics in processes that combine fluid flow and electrochemistry.
Professor Steffen Lindert
Research in the Lindert lab focuses on the development and application of computational techniques for modeling biological systems, with the goal of gaining a deeper understanding of biomolecular processes, predicting protein structure with the use of sparse experimental data, and discovering new drugs. We are using machine learning, physics-based and knowledge-based methods and our work combines elements of biochemistry, analytical chemistry, physical chemistry and biophysics.
Professor Raphael D. Levine
Professor Raphael Levine pursues research into electronic transport in two-dimensional quantum dot array systems that both hold promise for new electronic devices at the nanoscale and allow researchers to probe fundamental questions regarding electron transport in ordered and disordered lattices. He also investigates chemical reaction dynamics in extreme conditions, such as the hypersonic impact of molecular clusters on solid surfaces.
Professor Prineha Narang
The Narang Lab is an interdisciplinary group working on topics at the vibrant intersection of computational science, condensed matter theory, quantum photonics, and quantum information science. Topics in our group unify and push new directions in ab initio materials theory and transport methods, excited-state nanophotonics, ultrafast and nonequilibrium dynamics, computational condensed matter physics, topological materials science, and defects in quantum materials. We also have an active and growing effort in quantum information science, spanning quantum algorithms for quantum computation as well as simulation and emulation directions in quantum network science.
Professor Daniel Neuhauser
Professor Daniel Neuhauser is interested in a theoretical understanding of nanoscale devices capable of controlling: i) light (plasmonics, nanopolaritonics), ii) current (nanoelectronics), and iii) spin(spintronics, spinbirefringence.) His group uses computer-aided simulations to model the physical properties of various classes of nanosystems.
Professor Philippe Sautet
Prof. Sautet’s research focuses on modeling surfaces and nanomaterials for energy, catalysis and biomolecular applications. His group’s activity is centered on first-principles simulations of surfaces (in the form of model planar systems or of the surface of nanomaterial), of the interaction and organization of molecules at these surfaces and of their chemistry and catalytic reactivity. A large part of the activity aims at understanding molecular reactivity on the surface of heterogeneous catalysts from a computational chemistry approach.
Professor Benjamin J. Schwartz
Professor Benjamin Schwartz conducts research in the electronic structure of conjugated polymers. Such materials have the electrical properties of semiconductors but the mechanical properties and processing advantages of plastics. His group also studies solvent effects on chemical reactivity, and photochemistry.
Professor Todd O. Yeates
Professor Todd Yeates and his group focus heavily on structural, computational, and synthetic biology aspects of chemistry. His emphasis is on supra-molecular protein assemblies and synthetically designed protein assemblies, and conducts research in computational genomics in order to infer protein function and to learn new cell biology.