Metabolism, Aging and Development Researchers at UCLA conduct studies of spatial and temporal regulation of transcription and of the role of actin polymerization to determine cell polarity in Drosophila development and embryogenesis.

The research aims to understand the mechanisms of protein import into mitochondria, and to determine how defects in mitochondrial protein translocation lead to disease.

The group elucidates the metabolism of lipids, RNA, amino acids, and metals, and determining how regulation of synthesis, degradation, mobilization, and compartmentalization of these processes contribute to health, disease and aging. Further, the group studies how cells repair protein and small molecules to counteract spontaneous chemical damage associated with aging.

Faculty Research Summaries

Professor Soumitra Athavale

The Athavale group has broad interest in synthetic organic chemistry, (bio)molecular evolution and chemical biology, with research encompassing four main themes: (1) synthetic methodology and biocatalysis, (2) design principles of synthetic evolutionary systems, (3) fundamental relationships in enzyme structure and function, and (4) engineering enzymes as next-generation therapeutics.

Professor Guillaume F. Chanfreau

Medium Square.chanfreau.RPS10BProfessor Guillaume Chanfreau’s laboratory is interested in gene expression regulation in eukaryotic cells, with a particular emphasis on post-transcriptional steps. Within this large field, they are focusing on understanding how cells degrade RNAs that arise from malfunctions in gene expression pathways (“RNA surveillance”). In particular, they are analyzing the functions of the double-stranded RNA endonuclease RNase III and of the nonsense-mediated decay pathway in RNA surveillance, and how these enzymes regulate gene expression.

Professor Catherine F. Clarke

Medium Square.biochem.Clarke.Cathy.CoQProfessor Catherine Clarke and the Clarke lab study the biosynthesis and functional roles of coenzyme Q (ubiquinone or Q). Q functions in mitochondrial respiratory electron transport and as a lipid soluble antioxidant. The group is using the yeast Saccharomyces cerevisiae (bakers yeast) to elucidate the biosynthetic metabolism of Q. Their experimental approach employs a combination of molecular genetics, lipid chemistry and biochemistry to delineate the steps responsible for Q biosynthesis.

Professor Steven G. Clarke

Medium Square.clarke.rRNAA major interest of Professor Steven Clarke’s Laboratory is understanding the biochemistry of the aging process. The group is particularly interested in the generation of age-damaged proteins by spontaneous chemical reactions and the physiological role of cellular enzymes that can reverse at least some portion of the damage. They have focused their efforts on the degradation of aspartic acid and asparagine residues and the subsequent metabolism of their racemized and isomerized derivatives. The group is presently determining the biological role of protein methyltransferases that can initiate the conversion of D-aspartyl residues to the L-configuration as well as the conversion of isopeptide linkages to normal peptide bonds. Such “repair” reactions may greatly increase the useful lifetime of cellular proteins and may help insure organismal survival. View Professor Clarke’s YouTube Lecture

Professor Albert J. Courey

Medium Square.biochem.courey.SUMO.RNAProfessor Albert Courey and his group study the molecular basis of cell development. During embryogenesis, a cluster of apparently undifferentiated cells is transformed into an ordered array of differentiated tissues. Using Drosophila as a model system, his research group combines biochemical and genetic approaches to study the molecular basis of this amazing transformation. Essentially all the regulatory circuits they study are conserved throughout the animal kingdom. Therefore, their studies have important implications for human health and development.

Professor Kalli Kappel

The UCLA Kappel LabKappel Lab investigates how RNA and protein sequences encode molecular and cellular functions, with a focus on how RNA-binding proteins regulate RNA metabolism. To do this, the lab takes two integrated approaches: (1) developing high-throughput experimental methods — especially utilizing imaging and sequencing technologies — to map multiscale structures and function for large libraries of protein and RNA sequences; and (2) using machine learning and computational biophysical methods to build predictive sequence-structure-function models from large-scale datasets.

Professor Carla M. Koehler

Square.biochem.kohler.cellProfessor Carla Koehler and her research group encompass two major areas: Understanding the mechanism of protein import into mitochondria and determining the process by which defects in mitochondrial protein translocation lead to disease.

Professor Margot E. Quinlan

Medium Square.biochem.quinlan.cellProfessor Margot Quinlan and her group use biochemistry, microscopy and genetic approaches to study regulation of the actin cytoskeleton. The group is currently focused on Spire (Spir) and Cappuccino (Capu), two proteins that collaborate to build an actin network essential for early body axis development. Combining an in vitro understanding of the mechanism of Spir and Capu with in vivo studies of polar cells will provide insight into how the actin cytoskeleton is regulated and a broader understanding of cell polarity.

Professor Danielle L. Schmitt

The Schmitt Lab studies how cells regulate metabolism and cellular signaling in both space and time. Their approach is to develop genetically encoded biosensors for small metabolites and kinases for quantitative live cell imaging applications to observe metabolic regulation with high spatiotemporal regulation in single cells. The ultimate goal of this work is to understand how metabolism is spatiotemporally regulated in normal, healthy cells, and how metabolic diseases perturb this compartmentalized regulation.