Liu, Chong


Liu Chong



Chong received his B.S. degree in chemistry from Fudan University, China, where he synthesized mesoporous materials with Prof. Dongyuan Zhao. He then pursued his graduate research at University of California, Berkeley, working with Prof. Peidong Yang. His Ph. D. thesis focused on artificial photosynthesis that uses solar energy to synthesize selective chemicals. A variety of building blocks, including inorganic catalysts, semiconductor nanomaterials, and even microorganisms with selective reactivity, are integrated to create efficient functional devices. He received Materials Research Society graduate student award for his work. After receiving his Ph. D. in chemistry at Berkeley, he continued his career as Lee Kuan Yew postdoctoral fellow sponsored by Nanyang Technological University, Singapore. Working together with Prof. Daniel Nocera at Harvard University and Prof. Pamela Silver at Harvard Medical School, he combined the strengths of biology and inorganic chemistry, and developed inorganic/bio hybrid systems of solar-driven CO2 and N2 fixation with the efficiencies higher than natural counterparts. These works were published in Science and PNAS of which he was the co-first author. In 2017, Chong decided to join UCLA Chemistry & Biochemistry as a tenure-track assistant professor under the Jeffrey and Helo Zink Endowed Professional Development Term Chair in Chemistry. In 2023, he became an associate professor in UCLA’s Department of Chemistry & Biochemistry.

Research Interests

Our research group is an inorganic chemistry lab with specific interests in electrochemical systems for energy, biology, and environments. Combining our expertise in inorganic chemistry, nanomaterials, and electrochemistry, we aim to address some of the challenging questions in catalysis, energy conversion, CO2/N2 fixation, and microbiota. The research focus includes advanced bioelectrochemical systems of CO2/N2 fixation as well as electrochemical nanodevices enabling the study of biological, medical, environmental applications.

Visit Our Lab Web Site

Honors & Awards

  • NSF Faculty Early Career Development Program (CAREER) Award
  • Nanoscale, Emerging Investigator
  • Inorganic Chemistry Frontier, Emerging Investigator
  • UCLA Alpha Chi Sigma (AXΣ) Glenn T. Seaborg Award
  • Alfred P. Sloan Research Fellowship
  • Scialog Collaborative Innovation Awards, “CO2 conversion to bioplastics via electrochemical biosynthesis”. Chong Liu (UCLA), Haotian Wang (Rice University), and Andrea Hickes (University of Wisconsin, Madison)
  • Scialog Collaborative Innovation Awards, “Solar-Augmented Direct Air Capture of Methane Using Methanotrophic Bacteria”. Chong Liu (UCLA) and Nanette Boyle (Colorado School of Mines)
  • 2020 Innovator under 35 of China, MIT Technology Review 
  • Scialog Fellow: Negative Emissions Science (NES). Research Corporation for Science Advancement (RCSA)
  • Maximizing Investigators’ Research Award (MIRA), National Institute of General Medical Science
  • Journal of Materials Chemistry, Emerging Investigator
  • ACS Petroleum Research Fund, Doctoral New Investigator Grant
  • Science News’ SN 10: Scientists to Watch
  • Jeffery and Helo Zink Endowed Professional Development Term Chair
  • Lee Kuan Yew Postdoctoral Fellowship through Nanyang Technological University
  • Graduate Student Silver Award, 2014 Materials Research Society Spring Meeting
  • Chinese Government Award for Outstanding Self-Financed Students Abroad

Representative Publications

Below is the list of the selected and most recent publications.  For the full list, please visit here.

Note:  † equal contribution, * corresponding author, ◊ undergraduate student when conducting the research.

  • “Maximizing light-driven CO2 and N2 fixations in biology-material hybrids”, Guan, X.; Erşan, S.; Hu, X.; Atallah, T. L.; Xie, Y.; Lu, S.; Cao, B.; Sun, J.; Wu, K.◊; Huang, Y.; Duan, X.; Caram, J. R.; Yi, Y.; Park, J. O.; Liu, C.*, Nature Catal., 2022, accepted.
  • “Electrochemical mechanistic analysis from cyclic voltammograms based on deep learning”, Hoar, B. B.; Zhang, W.; Xu, S.; Deeba, R.; Costentin, C.*; Gu, Q.*; Liu, C.*, ACS Meas. Sci. Au, 2022, accepted. Link.
  • “Interfacial engineering gives enhanced selectivity in electrochemical nitrogen reduction reaction”, Xu, S.; Liu, C.*, Chem Catal. (preview)20222, 1841−1843. Link.
  • “Machine-learning-based inverse design for electrochemically controlled microscopic gradients of O2 and H2O2“, Chen, Y.†; Wang, J.†; Hoar, B. B.†; Lu, S.; Liu, C.*, Proc. Natl. Acad. Sci. U.S.A.2022119, e2206321119. Link.
  • “Spatial decoupling boosts CO2 electro-biofixation”, Sheng, H.; Liu, C.*, Nature Catal. (News & Views)20225, 357−358. Link.
  • “Bisulfate as a Redox-active Ligand in Vanadium-based Electrocatalysis for CH4 functionalization”, Xiang, D.†; Lin, S.-C.†; Deng, J.; Chen, H. M.*; Liu, C.*, Chem. Commun.202258, 2524−2527. Link. (Themed collection of “Functionalization of unreactive C−H bonds”)
  • “A Generalized Kinetic Model for Compartmentalization of Organometallic Catalysis”, Jolly, B. J.; Co, N. H.◊; Davis, A. R.◊; Diaconescu, P. L.*; Liu, C.*, Chem. Sci.202213, 1101−1110. Link.
  • “Biodegradable ABAB tetrablock copolymers by electrochemically controlled ring-opening polymerization”, Hern, Z. C.; Quan, S.; Dai, R.; Lai, A.; Wang, Y.◊; Liu, C.*; Diaconescu, P. L.*. J. Am. Chem. Soc.2021143, 19802−19808. Link.
  • “Electrocatalytic Methane Functionalization with d0 Early Transition Metals Under Ambient Conditions”, Deng, J.†; Lin, S.-C.†; Fuller, J. T.†; Zandkarimi, B.; Chen, H. M.*; Alexandrova, A. N.*; Liu, C.*, Angew. Chem. Int. Ed.202160, 26630−26638. Link.
  • “Silver nanoparticles boost charge-extraction efficiency in Shewanella microbial fuel cells”, Cao, B.; Zhao, Z.; Peng, L.; Shui, H.; Ding, M.; Song, F.; Guan, X.; Lee, C. K.; Huang, J.; Zhu, D.; Fu, X.; Wong, G. C. L.; Liu, C.; Nealson, K.; Weiss, P. S.; Duan, X.*; Huang, Y.*; Science2021373, 1336−1340. Link.
  • “Microscopic control of non-equilibrium systems: when electrochemistry meets nanotechnology”, Liu, C.*, Nano Lett.202118, 7429−7431 (invited Viewpoint). Link.
  • De novo approach to encapsulating biocatalysts into synthetic matrixes: from enzymes to microbial electrocatalysts”, Sheng, T.; Guan, X.; Liu, C.; Su, Y.*, ACS Appl. Mater. Interfaces202113, 52234−52249. (An invited review in a Forum on “Emerging Materials for Catalysis and Energy Applications — A Special Forum in Memory of Professor Chia-Kuang (Frank) Tsung”). LInk.
  • “AgII-mediated Electrocatalytic Ambient CH4 Functionalization Inspired by HSAB Theory”, Xiang, D.; Iñiguez, J. A.; Deng, J.; Guan, X.; Martinez, A.◊; Liu, C.*, Angew. Chem. Int. Ed.202160, 18152−18161. Link.
  • “Perfluorocarbon Nanoemulsions Create a Beneficial O2 Microenvironment in N2-fixing Biological | Inorganic Hybrid”, Lu, S.; Rodrigues, R. M.; Huang, S.◊; Chapman, J. O.◊; Guan, X.; Sletten, E. M.; Liu, C.*, Chem Catal.20211, 704−720. Link.
  • “Efficacy analysis of compartmentalization for ambient CH4 activation mediated by RhII metalloradical in nanowire array electrode”, Natinsky, B. S.†; Jolly, B. J.†; Dumas, D. M.◊; Liu, C.*; Chem. Sci.202112, 1818−1825. Link.
  • “Electricity-Powered Artificial Root Nodule”, Lu, S.; Guan, X.; Liu, C.*, Nature Commun., 2020, 11, 1505. Link.
  • “Close-packed nanowire-bacteria hybrids for efficient solar-driven CO2 fixation”, Su, Y.†; Cestellos-Blanco, S.†; Kim, J. M.†; Shen, Y.; Kong, Q.; Lu, D.; Liu, C.; Zhang, H.; Cao, Y.; Yang, P.*, Joule2020, Accepted. Link.
  • “Cluster Size Control toward High Performance Solution Processed InGaZnO Thin Film Transistor”, Wang, Z.; Xu, G.; Zhao, Z.; Cai, L.; Wu, Q.; Cheng, P.; Zhao, Y.; Xue, J.; Wang, R.; Liu, C.*; Yang, Y.*, ACS Appl. Electron. Mater.20191, 2483−2488. link.
  • “A solution catalytic cycle of incompatible steps for ambient air oxidation of methane to methanol”, Natinsky, B.; Lu, S.; Copeland, E.◊; Quintana, J.◊; Liu, C.*, ACS Cent. Sci., 2019, 5, 1584−1590. link. (Highlighted by ACS Cent. Sci.)
  • “Nanowire photoelectrochemistry”, Deng, J.; Su, Y.; Liu, D.; Yang, P.*; Liu, B.*; Liu, C.*, Chem. Rev.201915, 9221−9259. link.
  • “Perfluorocarbon nanoemulsion promotes the delivery of reducing equivalents for electricity-driven microbial CO2 reduction”, Rodrigues, R.; Guan, X.; Iñiguez, J.; Estabrook, D.; Chapman, J.◊; Huang, S.◊; Sletten, E.; Liu, C.*, Nature Catal.20192, 407−414. Link.
  • “Two are better than one”, Natinsky, B.; Liu, C.*, Nature Chem. (News & Views)201911, 200−201. Link.
  • “Modelling of Electrocatalytic Dinitrogen Reduction on Micro-structured Electrodes”, Lu, S.; Lee, D. H.◊; Liu, C.*, Small Methods20193, 1800332. Link.
  • “Boron-Doped Graphene Catalyzes Dinitrogen Fixation with Electricity”, Deng, J.; Liu, C.*, Chem (preview), 20184, 1773-1774. Link.
  • Solar-powered CO2 reduction by a hybrid biological | inorganic system”, Liu, C.; Colón, B. C.; Silver, P. A.*; Nocera, D. G.*; J. Photochem. Photobio. A, 2018358, 411−415, Link.
  • “Electrocatalytic nitrogen reduction at low temperature”, Deng, J.; Iniguez, J. A.; Liu, C.*; Joule20182, 846−856, Link.
  • “Physical Biology of the Materials-Microorganism Interface”, Sakimoto, K. K.; Kornienko, N.; Cestellos-Blanco, S.; Lim, J.; Liu, C.; Yang, P.*; J. Am. Chem. Soc., 2018140, 1978−1985. Link.
  • “Favoring the unfavored: Selective electrochemical nitrogen fixation using a reticular chemistry approach”, Lee, H. K.; Koh, C. S. L.; Lee, Y. H.; Liu, C.; Phang, I. Y.; Han. X.; Tsung, C.-K.; Ling, X. Y.*; Science Advances20184, eaar3208. Link
  • “Excitation-wavelength-dependent small polaron trapping of photoexcited carriers in α-Fe2O3”, Carneiro, L. M.; Cushing, S. K.; Liu, C.; Su, Y.; Yang, P.; Alivisatos, A. P.; Leone, S. R.*; Nature Mater.201716, 819−825. Link
  • “Ambient nitrogen reduction cycle using a hybrid inorganic-biological system”, Liu, C.†; Sakimoto, K. K.†; Colón, B. C.; Silver, P. A.*; Nocera, D. G.*; PNAS2017114, 6450−6455. Link
  • “Design of template-stabilized active and earth-abundant oxygen evolution catalysts in acid”, Huynh, M.; Ozel, T.; Liu, C.; Lau, E. C.; Nocera, D. G.*; Chem. Sci.20178, 4779−4794. Link
  • “13C-Labeling the Carbon-Fixation Pathway of a Highly Efficient Artificial Photosynthetic System”, Liu, C.; Nangle, S. N.; Colón, B. C.; Silver, P. A.*; Nocera, D. G.*; Faraday Discuss.2017198, 529−537. Link
  • “Directed Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO2 Reduction” Kong, Q.†; Kim, D.†; Liu, C.; Yu, Y.; Su, Y.; Li, Y.;Yang, P.*; Nano Lett.201616, 5675−5680. Link
  • “Water splitting–biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis” Liu, C.†; Colón, B. C.†; Ziesack, M.; Silver, P. A.*; Nocera, D. G.*; Science2016352, 1210−1213. Link
  • “Single-nanowire photoelectrochemistry” Su, Y.†; Liu, C.†; Brittman S.; Tang, J.; Fu, A.; Kornienko, N.; Kong, Q.; Yang, P.*; Nature Nanotech.201611, 609−612. Link
  • “Nanowire–Bacteria Hybrids for Unassisted Solar Carbon Dioxide Fixation to Value-Added Chemicals” Liu, C.†; Gallagher, J. J.†; Sakimoto, K. K.; Nichols, E. M.; Chang, C. J.*; Chang, M. C. Y.*; Yang, P.*; Nano Lett., 201515, 3634−3639. Link
  • “Hybrid bioinorganic approach to solar-to-chemical conversion” Nichols, E. M.†; Gallagher, J. J.†; Liu, C.; Su, Y.; Resasco, J.; Yu, Y.; Sun, Y.; Yang, P.*; Chang, M. C. Y.*; Chang, C. J.*; PNAS2015112, 11461−11466. Link
  • “MoS2-wrapped silicon nanowires for photoelectrochemical water reduction”, Zhang, L.†; Liu, C.†; Wong, A. B.; Resasco, J.; Yang, P.*; Nano Res.20158, 281−287. Link
  • “Nanowires for Photovoltaics and Artificial Photosynthesis”, Yang, P.*; Brittman, S.; Liu, C.; Semiconductor Nanowires, Royal Society of Chemistry, 2014, Chapter 6, p277 (Book chapter).
  • “Introductory lecture: Systems materials engineering approach for solar-to-chemical conversion” Liu, C.; Yang, P.*; Faraday Discuss.2014176, 9−16.(Perspective) Link
  • “Three-Dimensional Spirals of Atomic Layered MoS2″ Zhang, L.; Liu, K.; Wong, A. B.; Kim, J.; Hong, X.; Liu, C.; Cao, T.; Louie, S. G.; Wang, F.*; Yang, P.*; Nano Lett.201414, 6418−6423. Link
  • “Salt-Induced Self-Assembly of Bacteria on Nanowire Arrays” Sakimoto, K. K.; Liu, C.; Lim, J.; Yang, P.*; Nano Lett.201414, 5471−5476. Link
  • “25th Anniversary Article: Semiconductor Nanowires – Synthesis, Characterization, and Applications” Dasgupta, N. P.; Sun, J.; Liu, C.; Brittman, S.; Andrews, S. C.; Lim, J.; Gao, H.; Yan, R.; Yang, P.*; Adv. Mater.201426, 2137−2184. (Review) Link
  • “Simultaneously Efficient Light Absorption and Charge Separation in WO3/BiVO4 Core/Shell Nanowire Photoanode for Photoelectrochemical Water Oxidation” Rao, P. M.; Cai, L.; Liu, C.; Cho, I. S.; Lee, C. H.; Weisse, J. M.; Yang, P.; Zheng, X.*; Nano Lett.201414, 1099−1105. Link
  • “Semiconductor Nanowires for Artificial Photosynthesis” Liu, C.; Dasgupta, N. P.; Yang, P.*; Chem. Mater.201426, 415−422. (Review) Link
  • “Electrodeposited Cobalt-Sulfide Catalyst for Electrochemical and Photoelectrochemical Hydrogen Generation from Water” Sun, Y.†; Liu, C.†; Grauer, D. C.; Yano, J.; Long, J. R.*; Yang, P.*; Chang, C. J.*; J. Am. Chem. Soc.2013135, 17699−17702. Link
  • “Femtosecond M2,3-Edge Spectroscopy of Transition-Metal Oxides: Photoinduced Oxidation State Change in α-Fe2O3” Vura-Weis, J.; Jiang, C.-M.; Liu, C.; Gao, H.; Lucas, J. M.; de Groot, F. M. F.; Yang, P.; Alivisatos, A. P.; Leone, S. R.*; J. Phys. Chem. Lett., 2013, 4, 3667−3671. Link
  • “Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction” Dasgupta, N. P.†; Liu, C.†; Andrews, S.; Prinz, F. B.; Yang, P.*; J. Am. Chem. Soc.2013135, 12932−12935. Link
  • “Large-Scale Synthesis of Transition-Metal-Doped TiO2 Nanowires with Controllable Overpotential” Liu, B.†; Chen, H. M.†; Liu, C.; Andrews, S. C.; Hahn, C.; Yang, P.*; J. Am. Chem. Soc.2013135, 9995−9998. Link
  • “A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting” Liu, C.†; Tang, J.†; Chen, H. M.; Liu, B.; Yang, P.*; Nano Lett.201313, 2989−2992. Link
  • “Alumina-coated Ag nanocrystal monolayers as surface-enhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates” Ling, X. Y.; Yan, R.; Lo, S.; Hoang, D. T.; Liu, C.; Fardy, M. A.; Khan, S. B.; Asiri, A. M.; Bawaked, S. M.; Yang, P.*; Nano Res.20147, 132−143. Link
  • “Zn-Doped p-Type Gallium Phosphide Nanowire Photocathodes from a Surfactant-Free Solution Synthesis” Liu, C.; Sun. J.; Tang, J.; Yang, P.*; Nano Lett.201212, 5407−5411. Link
  • “Plasmon-Enhanced Photocatalytic Activity of Iron Oxide on Gold Nanopillars” Gao, H.†; Liu, C.†; Jeong, H. E.; Yang, P.*; ACS Nano20126, 234−240. Link
  • “Light-Induced Charge Transport within a Single Asymmetric Nanowire” Liu, C.†; Hwang, Y. J.†; Jeong, H. E.; Yang, P.*; Nano Lett201111, 3755−3758. Link
  • “Surfactant-Free, Large-Scale, Solution–Liquid–Solid Growth of Gallium Phosphide Nanowires and Their Use for Visible-Light-Driven Hydrogen Production from Water Reduction” Sun. J.; Liu, C.; Yang, P.*; J. Am. Chem. Soc.2011133, 19306−19309. Link
  • “Multifunctional Mesoporous Composite Microspheres with Well-Designed Nanostructure: A Highly Integrated Catalyst System” Deng, Y.; Cai, Y.; Sun, Z.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Liu, C.; Wang, Y.; Zhao, D.*; J. Am. Chem. Soc.2010132, 8466−8473. Link
  • “Design of Amphiphilic ABC Triblock Copolymer for Templating Synthesis of Large-Pore Ordered Mesoporous Carbons with Tunable Pore Wall Thickness” Zhang, J.; Deng, Y.*; Wei, J.; Sun, Z.; Gu, D.; Bongard, H.; Liu, C.; Wu, H.; Tu, B.; Schüth, F.; Zhao, D.*; Chem. Mater.200921, 3996−4005. Link
  • “Mesoporous Monocrystalline TiO2 and Its Solid-State Electrochemical Properties” Yue, W.; Xu, X.; Irvine, J. T. S.; Attidekou, P. S.; Liu, C.; He, H.; Zhao, D.; Zhou, W.*; Chem. Mater.200921, 2540−2546. Link
  • “A simple approach to the synthesis of hollow microspheres with magnetite/silica hybrid walls” Liu, J.; Deng, Y.*; Liu, C.; Sun, Z.; Zhao, D.*; J. Colloid Interface Sci.2009333, 329−334. Link
  • “Synthesis of Core/Shell Colloidal Magnetic Zeolite Microspheres for the Immobilization of Trypsin” Deng, Y.; Deng, C.; Qi, D.; Liu, C.; Liu, J.; Zhang, X.; Zhao, D.; Adv. Mater.200921, 1377−1382. Link
  • “Homopolymer induced phase evolution in mesoporous silica from evaporation induced self-assembly process” Liu, C.; Deng, Y.*; Liu, J.; Wu, H.; Zhao, D.; Micro. Meso. Mater.2008116, 633−640. Link
  • “Ultra-Large-Pore Mesoporous Carbons Templated from Poly(ethylene oxide)-b-Polystyrene Diblock Copolymer by Adding Polystyrene Homopolymer as a Pore Expander” Deng, Y.; Liu, J.; Liu, C.; Gu, D.; Sun, Z.; Wei, J.; Zhang, J.; Zhang, J.; Tu, B.; Zhao, D.*; Chem. Mater.200820, 7281−7286. Link
  • “A novel approach to the construction of 3-D ordered macrostructures with polyhedral particles” Deng, Y.; Liu, C.; Liu, J.; Zhang, F.; Yu, T.; Zhang, F.; Gu, D.; Zhao, D.; J. Mater. Chem.200818, 408−415. Link
  • “Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEO–PMMA diblock copolymer” Deng, Y.; Liu, C.; Gu, D.; Yu, T.; Tu, B.; Zhao, D.; J. Mater. Chem.200818, 91−97. Link
  • “Facile Synthesis of Hierarchically Porous Carbons from Dual Colloidal Crystal/Block Copolymer Template Approach” Deng, Y.; Liu, C.; Yu, T.; Liu, F.; Zhang, F.; Wan, Y.; Zhang, L.; Wang, C.; Tu, B.; Webley, P. A.; Wang, H.; Zhao, D.*; Chem. Mater.200719, 3271−3277. Link
  • “Ordered Mesoporous Silicas and Carbons with Large Accessible Pores Templated from Amphiphilic Diblock Copolymer Poly(ethylene oxide)-b-polystyrene” Deng, Y.; Yu, T.; Wan, Y.; Shi, Y.; Meng, Y.; Gu, D.; Zhang, L.; Huang, Y.; Liu, C.; Wu, X.; Zhao, D.; J. Am. Chem. Soc.2007129, 1690−1697. Link