Andrews, Anne M.


Andrews Anne


Dr. Andrews is Professor of Psychiatry at the University of California, Los Angeles. She is a member of the Semel Institute for Neuroscience & Human Behavior, the Hatos Center for Neuropharmacology, and the California NanoSystems Institute. Dr. Andrews received her B.S. in Chemistry from the Pennsylvania State University and earned her Ph.D. in Chemistry as a U.S. Department of Education Fellow working at the National Institute of Mental Health, where she was later a postdoctoral fellow and senior staff fellow. At the NIMH, Andrews and her mentor, Dr. Dennis Murphy, discovered and characterized a novel serotonin neurotoxin, 2’-NH2-MPTP. Dr. Andrews was also instrumental in early studies on serotonin transporter-deficient mice. Andrews is a member of the Society for Neuroscience, American Chemical Society, and Society for Electroanalytical Chemistry. She has been the recipient of an NIH Fellows Award for Research Excellence, an Eli Lilly Outstanding Young Analytical Chemist Award, an American Parkinson’s Disease Association Research Award, and a Brain & Behavior Research Foundation (NARSAD) Independent Investigator Award. She is a fellow of the Collegium Internationale Neuropsychopharmacologicum and a Serotonin Club elected councilor. Recently, Dr. Andrews became Associate Editor for ACS Chemical Neuroscience.

­At UCLA, Andrews leads efforts in basic and translational research on anxiety and depression, and at the nexus of nanoscience and neuroscience. Andrews’ interdisciplinary research team of neuroscientists, biologists, chemists, and engineers focuses on understanding how the serotonin system and particularly, the serotonin transporter, modulate neurotransmission to influence complex behaviors including anxiety, mood, stress responsiveness, and learning and memory. Genetic and pharmacologic mouse models and human genetic variants are studied to understand the molecular basis of serotonin system function associated with the etiology and treatment of mood and anxiety disorders. Key proteins (e.g., brain-derived neurotrophic factor) and neuronal architectures regulated by serotonin are also investigated. Nanomaterials are designed for fundamental studies on neurotransmitter recognition by native and nonnative binding partners (aptamers) and for the development of in vivo nanobiosensors and functionally directed proteomics.

Research Interests

Serotonin neurotransmitter system


Above:  LLC-PK1 Cells expressing fluorescently-tagged serotonin transporter

The Andrews’ group seeks to understand how the neurotransmitter serotonin encodes emotionally salient information related to anxiety, mood, and stress responsiveness.

Serotonin transmission is studied in mouse models and psychiatric patient populations. Genetics, pharmacology, and developmental timing are used to investigate the etiology and treatment of anxiety and mood disorders, and to advance personalized predictive medicine.

Aptamer-coupled field-effect transistor sensor, microelectrode voltammetry, and microdialysis methods are developed to investigate neurochemical signaling at high spatial, temporal, and chemical resolution in vivo .


Honors & Awards

  • 2021 Distinguished Women in Chemistry/Chemical Engineering Award, IUPAC
  • 2021 College of Fellows, AIMBE
  • 2017 Fellow, American College of Neuropsychopharmacology
  • 2017 NIH Director’s Transformative Research Award, National Institute of Health

Representative Publications


  • Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring B. Wang, C. Zhao, Z. Wang, K.-A. Yang, X. Cheung, W. Liu, W. Yu, S. Lin, Y. Zhao, K. M. Cheung, H. Lin, H. Hojaiji, P. S. Weiss, M. N. Stojanović, A. J. Tomiyama, A. M. Andrews , and S. Emaminejad, Science Advances 8: eabk0967 (2022). DOI: 10.1126/sciadv.abk0967


  • Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring C. Zhao, K. M. Cheung, I. W. Huang, H. Yang, N. Nakatsuka, W. Liu, Y. Cao, T. Man, P. S. Weiss, H. Monbouquette, and A. M. Andrews , Science Advances Vol. 7, Issue 48 (2021). DOI: DOI: 10.1126/sciadv.abj7422
  • Simultaneous serotonin and dopamine monitoring across timescales by rapid pulse voltammetry with partial least squares regression C. S. Movassaghi, K. A. Perrotta, H. Yang, R. Iyer, X. Cheng, M. Dagher, M. Fillol, and A. M. Andrews , Anal Bioanal Chem. 413(27):6747-6767 (2021). DOI: 10.1007/s00216-021-03665-1
  • Narrower nanoribbon biosensors fabricated by chemical lift-off lithography show higher sensitivity C. Zhao, Q. Liu, K. M. Cheung, W. Liu, Q. Yang, X. Xu, P. S. Weiss, C. Zhou, and A. M. Andrews, ACS Nano 15:904-915 (2021). DOI: 10.1021/acsnano.0c07503
  • Divalent cation dependence enhances dopamine aptamer biosensing. N. Nakatsuka, J. M. Abendroth, K. A, Yang, and A. M, Andrews, ACS Applied Materials & Interfaces (2021). DOI: /10.1021/acsami.0c17535


  • Flexible Multifunctional In2O3 Nanoribbon Aptamer-Field-Effect Transistor Biosensing Q. Liu, C. Zhao, M. Chen, Y. Liu, Z. Zhao, F. Wu, Z. Li, P. S. Weiss, A. M. Andrews, and C. Zhou, iScience 10.1016/j.isci.2020.101469 (2020).
  • Detecting DNA and RNA and Differentiating Single-Nucleotide Variations via Field-Effect Transistors. K. M. Cheung, J. M. Abendroth, N. Nakatsuka, B. Zhu, Y. Yang, A. M. Andrews, and P. S. Weiss, Nano Letters 10.1021/acs.nanolett.0c01971 (2020).
  • Scalable fabrication of quasi-one-dimensional Au nanoribbons for plasmonic sensing. C. Zhao, X. Xu, A. R. Ferhan, N. Chiang, J. A. Jackman, Q. Yang, W. Liu, A. M. Andrews, N.-J. Cho, and P. S. Weiss, Nano Letters 20:1747-1754 (2020). PMCID:PMC7067626
  • Chemical lift-off lithography of metal and semiconductor surfaces. K. M. Cheung, D. M. Stemer, C. Zhao, T. D. Young, J. N. Belling, A. M. Andrews, and P. S. Weiss, ACS Materials Letters 2:76-83 (2020). PMCID: PMC7220117


  • Nanoscience and nanotechnology at UCLA. A. Khademhosseini, A. E. Nel, H. Bunje, C. J. DeSantis, A. M. Andrews, R, A. Blaik, Z. Gu, H, Meng, A. Ozcan, S. H. Tolbert, T. Xia, J. I. Zink, and P. S. Weiss. ACS Nano. 13:6127-6129 (2019).
  • Phenylalanine Monitoring via Aptamer-Field-Effect Transistor Sensors . K. M. Cheung, K.-A. Yang, N. Nakatsuka, C. Zhao, M. Ye, M. E. Jung, H. Yang, P. S. Weiss, M. N. Stojanović, and A. M. Andrews, ACS Sensors 4:3308-3317 (2019). (Invited cover) PMCID:PMC6957227
  • n Utero Exposure to Citalopram Mitigates Maternal Stress Effects on Fetal Brain Development. J. C. Velasquez, Q. Zhao, Y. Chan, L. C. M. Galindo, C. Simasotchi, D. Wu, Z. Hou, S. M. Herod, T. F. Oberlander, S. Gil, T. Fournier, I. Burd, A. M. Andrews, and A. Bonnin, ACS Chemical Neuroscience 10:3307-3317 (2019). PMCID: PMC6733519
  • Kappa Opioid Receptors Drive a Tonic Aversive Component of Chronic Pain. S. Liu, S. Pickens, N. E. Burma, I. Ibarra-Lecue, H. Yang, L. Xue, C. Cook, J. K. Hakimian, A. L. Severino, L. Lueptow, K. Komarek, A. M. W. Taylor, M. C. Olmstead, F. I. Carroll, C. E. Bass, A. M. Andrews, W. Walwyn, T. Trang, C. J. Evans, F. M. Leslie, and C. M. Cahill, Journal of Neuroscience (2019).DOI: 10.1523/JNEUROSCI.0274-19.2019


  • Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. N. Nakatsuka, K.-A. Yang, J. M. Abendroth, K. Cheung, X. Xu, H. Yang, C. Zhao, B. Zhu, Y. S. Rim, Y. Yang, P. S. Weiss, M. N. Stojanović, and A. M. Andrews, Science (2018).DOI: 10.1126/science.aao6750
  • Large-area, ultrathin metal-oxide semiconductor nanoribbon arrays fabricated by chemical lift-off lithography. C. Zhao, X. Xu, S.-H. Bae, Q. Yang, W. Liu, J. N. Belling, K. M. Cheung, Y. S. Rim, Y. Yang, A. M. Andrews, and P. S. Weiss, ACS Nano 18:5590–5595 (2018).
  • Aptamer recognition of multiplexed small-molecule-functionalized substrates. N. Nakatsuka, H. H. Cao, S. Deshayes, A. L. Melkonian, A. M. Kasko, P. S. Weiss, and A. M. Andrews, ACS Applied Materials & Interfaces (2018).DOI: 10.1021/acsami.8b02837
  • Small-molecule patterning via pre-functionalized alkanethiols. H. H. Cao*, N. Nakatsuka*, S. Deshayes, H. Yang, P. S. Weiss, A. M. Kasko, and A. M. Andrews (*equal contributors), Chemistry of Materials (2018). DOI: 10.1021/acs.chemmater.8b00377
  • Polyserotonin nanoparticles as multifunctional materials for biomedical applications. N. Nakatsuka, M. M. Hasani-Sadrabadi, K. M. Cheung, T. D. Young, G. Bahlakeh, A. Moshaverinia, P. S. Weiss, and A. M. Andrews, ACS Nano 12:4761-4774 (2018).


  • High-affinity nucleic-acid based receptors for steroids. K.-A. Yang, H.-S. Chun, Y. Zhang, S. Pecic, N. Nakatsuka, A. M. Andrews, T. P. Worgall, and M. N. Stojanović, ACS Chemical Biology12:3103-3112 (2017).
  • Patterning of supported gold monolayers via chemical lift-off lithography. L. S. Slaughter, K. M. Cheung, S. Kaappa, H. H. Cao, Q. Yang, T. D. Young, A. C. Serino, S. Malola, J. M. Olson, S. Link, H. Häkkinen, A. M. Andrews, and P. S. Weiss, Beilstein Journal of Nanotechnology 8:2648-2661 (2017).
  • Self-collapse lithography. C. Zhao, X. Xu, Q. Yang, T. Man, S. J. Jonas, J. J. Schwartz, A. M. Andrews, and P. S. Weiss ACS Nano 17:5035-5042 (2017).
  • Advancing Biocapture Substrates via Chemical Lift-Off Lithography. H. H. Cao, N. Nakatsuka, W.-S. Liao, A. C. Serino, S. Cheunkar, H. Yang, P. S. Weiss, and A. M. Andrew, Chemistry of Materials 29:6829-6839 (2017).
  • Self-Collapse Lithography. C. Zhao, X. Xu, Q. Yang, T. Man, S. J. Jonas, J. J. Schwartz, A. M. Andrews, and P. S. Weiss, Nano Letters 17:5035-5042 (2017).
  • Analyzing Spin Selectivity in DNA-Mediated Charge Transfer via Fluorescence Microscopy. J. M. Abendroth, N. Nakatsuka, M. Ye, D. Kim, E. E. Fullerton, A. M. Andrews, and P. S. Weiss, ACS Nano 11:7516-7526 (2017).
  • Emerging Trends in Micro- and Nanoscale Technologies in Medicine: From Basic Discoveries to Translation. M. M. Alvarez, J. Aizenberg, M. Analoui, A. M. Andrews, G. Bisker, E. S. Boyden, R. D. Kamm, J. M. Karp, D. J. Mooney, R. Oklu, D. Peer, M. Stolzoff, M. S. Strano, G. Trujillo-de Santiago, T. J. Webster, P. S. Weiss, A. Khademhosseini, ACS Nano (2017).
  • The Chemistry of Thought: The Role of the Measurement Sciences in Brain Research. A. M. Andrews, R. Bhargava, R. Kennedy, L. Li, J. V. Sweedler, Analytical Chemistry 89:4757 (2017).
  • Polymer-Pen Chemical Lift-Off Lithography. X. Xu, Q. Yang, K. M. Cheung, C. Zhao, N. Wattanatorn, J. N. Belling, J. M. Abendroth, L. S. Slaughter, C. A. Mirkin, A. M. Andrews, P. S. Weiss, ACS Nano 17:3302-3311 (2017).
  • Interplay between materials and microfluidics. X. Hou, Y. S. Trujillo-de Santiago,M. M. Alvarez, J. Ribas, S. J. Jonas, P. S. Weiss, A. M. Andrews, J. Aizenberg, A. Khademhoussini, Nature Reviews Materials2:17016 (2017).
  • Differentiating siblings: The case of dopamine and norepinephrine. N. Nakatsuka and A. M. Andrews, ACS Chemical Neuroscience 8:218-220 (2017).
  • Why monitor molecules in neuroscience? A. M. Andrews, ACS Chemical Neuroscience 8:211-212 (2017).
  • Diverse applications of nanomedicine. B. Pelaz, C. Alexiou, R. A. Alvarez Puebla, F. Alves, A. M. Andrews, S. Ashraf, L. P. Balogh, L. Ballerini, A. Bestetti, C. Brendel, S. Bosi, M. Carril, W. C. W. Chan, C. Chen, X. Chen, X. Chen, Z. Cheng, D. Cui, J. Du, C. Dullin, A. Escudero, N. Feliu, M. Gao, M. George, A. Grünweller, Z. Gu, Y. Gogotsi, N. J. Halas, N. Hampp, R. K. Hartmann, M. C. Hersam, P. Hunziker, J. Jian, X. Jiang, P. Jungebluth, P. Kadhiresan, K. Kataoka, A. Khademhosseini, J. Kopecek, N. A. Kotov, H. F. Krug, D. S. Lee, C.-M. Lehr, K. W. Leong, X.-J. Liang, M. Lim, Luis M. Liz Marzán, X. Ma, P. Macchiarini, H. Meng, H. Möhwald, P. Mulvaney, A. E. Nel, S. Nie, P. Nordlander, T. Okano, J. Oliveira, T. H. Park, R. M. Penner, M. Prato, V. Puntes, V. Rotello, A. Samarakoon, R. E. Schaak, Y. Shen, S. Sjoqvist, A. G. Skirtach, M. G. Soliman, M. M. Stevens, B. Z. Tang, R. Tietze, S. Van Epps, B. N. Udugama, H.-W. Sung, T. Weil, P. S. Weiss, I. Willner, Y. Wu, L. Yang, Z. Yue, Q. Zhang, Q. Zhang, X.-E. Zhang, Y. Zhao, X. Zhou, and W. J. Parak, ACS Nano 11 (2017), in press. Editors’ choice.
  • Editors’ favorites of 2016. C. W. Lindsley, J. M. Hooker, K. A. Cunningham, A. M. Andrews, ACS Chemical Neuroscience 8:1-3 (2017).



  • Printable ultrathin metal oxide semiconductor-based conformal biosensors. Y. S. Rim, S. H. Bae, H. Chen, J. L. Yang, J. Kim, A. M. Andrews, P. S. Weiss, Y. Yang, H. R. Tseng ACS Nano 9:12174-12181 (2015).
  • Controlled DNA patterning by chemical lift-off lithography: matrix matters. H. H. Cao, N. Nakatsuka, A. C. Serino, W. S. Liao, S. Cheunkar, H. Yang, P. S. Weiss and A. M. Andrews, ACS Nano (9):11439-11454 (2015).
  • Prefrontal cortex vistas: A serotonin safari. M. B. Stein and A. M. Andrews, ACS Chemical Neuroscience 6(7):936–937 (2015).
  • Serotonin states and social anxiety. M. B. Stein and A. M. Andrews, JAMA Psychiatry  72(8):845-847 (2015).
  • The future of monitoring molecules. A. M. Andrews, ACS Chemical Neuroscience6(1):1–2 (2015).
  • Sex- and SERT-associated differences in stimulated serotonin revealed by fast microdialysis. H. Yang, M. M. Sampson, D. Senturk, and A. M. Andrews, ACS Chemical Neuroscience 6(8):1487–1501 (2015).
  • Fabrication of high-performance ultrathin In2O3 film field-effect transistors and biosensors using chemical lift off lithography. J. Kim, Y. S. Rim, H. Chen, H. H. Cao, N. Nakatsuka, H. L. Hinton, C. Zhao, A. M. Andrews, Y. Yang, and P. S. Weiss, ACS Nano  9(4):4572–4582 (2015).
  • Perinatal vs. genetic programming of serotonin states associated with anxiety. S. C. Altieri, H. Yang, H. J. O’Brien, H. M. Redwine, D. Senturk, J. G. Hensler, and A. M. Andrews, Journal of Neuropsychopharmacology 40(6):1456-1470 (2015).
  • Flow cytometry to determine serotonin transporter function in human peripheral blood cells. B. S. Beikmann and A. M. Andrews, Encyclopedia of Psychopharmacology W. Blenau and A. Baumann, eds., Neuromethods series, W. Walz, Editor-in-chief, Springer, New York, NY (2015).
  • Electrochemical techniques and advances in psychopharmacology. L. C. Daws, A. M. Andrews, and G. A. Gerhardt, Encyclopedia of Psychopharmacology I. P. Stolerman, ed., Springer, New York, NY (2015).


  • 2’-NH2-MPTP: A serotonin and norepinephrine neurotoxin. J. B. Ochroch, A. J. Bressler, H. Yang, D. L. Murphy, S. A. Altieri, and A. M. Andrews, Handbook of Neurotoxicity R. Kostrzewa, ed., Springer, New York, NY (2014).
  • Functional characterization of the S41Y (C2755A) polymorphism of tryptophan hydroxylase 2. N. Carkaci-Salli, U. Salli, I. Tekin, M. K. Zhao, T. L. Gilman, A. M. Andrews, and K. E. Vrana, Journal of Neurochemistry 130:748-758 (2014).


  • Functional common promoter and rare coding region variants in the serotonin transporter gene, SLC6A4, associated with Tourette disorder. P. R. Moya, J. R. Wendland, A. M. Andrews, L. M. Rubenstein, K. R. Timpano, G. A. Heiman, J. A. Tischfield, R. A. King, S. Ramamoorthy, F. J. McMahon, and D. L. Murphy, Movement Disorders 28:1263-70 (2013).
  • Small-molecule arrays for sorting G-protein-coupled receptors. W.-S. Liao, H. H. Cao, S. Cheunkar, M. J. Shuster, S. C. Altieri, P. S. Weiss, and A. M. Andrews, Journal of Physical Chemistry C 117:22362–22368 (2013).
  • Physiologically relevant changes in serotonin resolved by fast microdialysis. H. Yang, A. B. Thompson, B. J. McIntosh, S. C. Altieri, and A. M. Andrews,ACS Chemical Neuroscience 4:790-798 (2013). (Abstract, PDF)
  • The BRAIN initiative: Toward a chemical connectome. A. M. Andrews, ACS Chemical Neuroscience 4:645 (2013). (PDF)
  • Nanotools for neuroscience and brain activity mapping. A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, X. Zhuang. ACS Nano 7:1850-66 (2013). (AbstractPDF)
  • From the bottom up: Dimensional control and characterization in molecular monolayers. S. A. Claridge, W.-S. Liao,  J. C. Thomas, Y. Zhao, H. H. Cao, S. Cheunkar, A. C. Serino, A. M. Andrews, and P. S. Weiss, Chemical Society Reviews 42:2725-2745 (2013). (AbstractPDF)
  • The real catecholamine content of secretory vesicles in the CNS revealed by electrochemical cytometry. D. M. Omiatek, A. J. Bressler, A.–S. Cans, A. M. Andrews, M. L. Heien, and A. G. Ewing, Scientific Reports 3:1447 (2013). (AbstractPDF)
  • What’s old is new. A. M. Andrews and L. C. Daws, ACS Chemical Neuroscience 4:1-2 (2013). (AbstractPDF)
  • Rethinking serotonin 1A receptors: Emerging modes of inhibitory feedback of relevance to emotion-related behavior. S. C. Altieri, A. L. Garcia-Garcia, E. D. Leonardo, and A. M. Andrews, ACS Chemical Neuroscience 4:72-83 (2013). (AbstractPDF)
  • Serotonin uptake is largely mediated by platelets versus lymphoyctes in peripheral blood cells. B. S. Beikmann, I. D. Tomlinson, S. J. Rosenthal, and A. M. Andrews, ACS Chemical Neuroscience 4:161-170 (2013) (Serotonin Club silver anniversary special issue). (AbstractPDF)


  • Subtractive patterning by chemical lift-off lithography. W.-S. Liao, S. Cheunkar, H. H. Cao, H. R. Bednar, P. S. Weiss, and A. M. Andrews, Science 327:1517-1521 (2012). (AbstractPDF)
  • Celebrating serotonin. A. M. Andrews, ACS Chemical Neuroscience 3:644–645 (2012). (AbstractPDF)
  • Nano in the brain: Nano-neuroscience. A. M. Andrews and P. S. Weiss, ACS Nano 6:8463-4 (2012).  (AbstractPDF)
  • Visual inspiration and cover art. A. M. Andrews, ACS Chemical Neuroscience, 3:492 (2012). (PDF)
  • Serotonergic pathways in depression. S. A. Altieri, Y. S. Singh, E. Sibille, and A. M. Andrews in Neurobiology of Depression. F. López‐Muñoz and C. Álamo, eds. Frontiers in Neuroscience Book Series, Boca Raton, FL (2012).
  • Differential serotonin transport is linked to the rh5-HTTLPR in peripheral blood cells. Y. S. Singh, S. C. Altieri, T. L. Gilman, H. A. Michael, I. D. Tomlinson, S. J. Rosenthal, G. M. Swain, M. A. Murphy-Corb, R. E. Ferrell, and A. M. Andrews, Translational Psychiatry, 2:e77 (2012). (AbstractPDF)


  • Comparison of oligo(ethylene glycol)alkanethiols vs n‐alkanethiols: Self‐assembly, insertion, and functionalization. M. J. Shuster, A. Vaish, M. L. Gilbert, M. Martinex‐Rivera, R. M. Nezarati, P. S. Weiss, and A. M. Andrews, Journal of Physical Chemistry C, 115: 24778– 24787 (2011) (AbstractPDF).
  • Thin gold film‐assisted fluorescence spectroscopy for biomolecule sensing. A. Vaish, W.‐S. Liao, M. J. Shuster, J. M. Hinds, P. S. Weiss, and A. M. Andrews, Analytical Chemistry, 83: 7451–7456 (2011) (AbstractPDF).
  • Patterning small‐molecule biocapture surfaces: Microcontact insertion printing vs photolithography. M. J. Shuster, A. Vaish, H. H. Cao, A. I. Guttentag, J. E. McManigle, A. L. Gibb, M. Martinez‐Rivera, R. M. Nezarati, J. M. Hinds, W.‐S. Liao, P. S. Weiss, and A. M. Andrews, invited contribution for Chemical Communications, 47:10641–10643 (2011) (AbstractPDF).
  • Head‐to‐head comparisons of carbon fiber microelectrode coatings for sensitive and selective neurotransmitter detection by voltammetry. Y. S. Singh, L. A. Sawarynski, P. D. Dabiri, W. R. Choi, and A. M. Andrews, Analytical Chemistry, 83:6658‐6666 (2011) (AbstractPDF).
  • Tuning stamp surface energy for soft lithography of polar molecules to fabricate small-molecule microarrays. A. Vaish, M. J. Shuster, S. Cheunkar, P. S. Weiss, and A. M. Andrews, Small, 7:1471‐1479 (2011) invited contribution for special issue on “Nanotechnology with Soft Matter”, cover (AbstractPDF).


  • Electrochemical techniques and advances in psychopharmacology. L. C. Daws, A. M. Andrews, and G. G. Gerhardt, Encyclopedia of Psychopharmacology, I. P. Stolerman, ed., Springer, New York, NY (2010) (Link).
  • Presynaptic adaptive responses to constitutive versus adult pharmacologic inhibition of serotonin uptake. B. A. Luellen, T. L. Gilman, and A. M. Andrews, Experimental Models in Serotonin Transporter Research, A. Kaleuv, ed., Oxford University Press, New York, NY (2010) (PDF)
  • Capillary UHPLC with elevated temperature for sub‐one minute separations of basal serotonin in sub‐microliter brain microdialysate samples. Y. Liu, J. Zhang, X. Xu, M. K. Zhao, A. M. Andrews, and S. G. Weber, Analytical Chemistry 82:9611‐9616 (2010) (AbstractPDF).
  • Biomarkers to predict antidepressant response. A. F. Leuchter, I. A. Cook, S. P. Hamilton, K. L. Narr, A. Toga, A. M. Hunter, K. Faull, J. Whitelegge, A. M. Andrews, J. Loo. B. Way. S. F. Nelson, S. Horvath, and B. D. Lebowitz, Current Psychiatry Reports 12:553‐562 (2010) (AbstractPDF).
  • γ‐Aminobutyric acid‐type A receptor deficits cause hypothalamic‐pituitary‐adrenal axis hyperactivity and antidepressant drug sensitivity reminiscent of melancholic forms of depression. Q. Shen, R. Lal, B. A. Luellen, J. C. Earnheart, A. M. Andrews, and B. Lüscher, Biological Psychiatry 68:512‐520 (2010) (AbstractPDF).
  • Native serotonin membrane receptors recognize 5‐hydroxytryptophan‐functionalized substrates: Enabling small‐molecule recognition. A. Vaish, M. J. Shuster, S. Cheunkar, Y. S. Singh, P. S. Weiss, and A. M. Andrews, ACS Chemical Neuroscience 1:495‐504 (2010) (AbstractPDF).
  • Low‐stress route learning using the Lashley III maze in young and aging mice. A. Bressler, D. Blizard, and A. Andrews, Journal of Visualized Experiments 39. (2010) (AbstractVideo article).
  • Boron‐doped diamond microelectrodes reveal reduced rates of serotonin uptake in lymphocytes from adult rhesus monkeys carrying the short allele of the 5‐HTTLPR. Y. S. Singh, L. E. Sawarynski, H. A. Michael, R. E. Ferrell, M. A. Murphy‐Corb, G. M. Swain, B. A. Patel, and A. M. Andrews, ACS Chemical Neuroscience 1:49‐64 (2010) (AbstractPDF).


  • Does chronic antidepressant treatment increase extracellular serotonin? A. M. Andrews, perspective for Frontiers in Neuroscience(Depression special issue), 3:246‐247 (2009) (PDF).


  • How the serotonin story is being rewritten by new gene-based discoveries principally related to SLC6A4, the serotonin transporter gene, which functions to influence all cellular serotonin systems. D. L. Murphy, M. A. Fox, K. R. Timpano, P. Moya, R. Ren-Patterson, A. M. Andrews, A. Holmes, S. W. Watts. J. R. Wendland, and K. -P. Lesch, Neuropharmacology 55:932-960 (2008) invited review (AbstractPDF).
  • Hybrid approaches to nanometer-scale patterning: Exploiting tailored intermolecular interactions. T. J. Mullen, C. Srinivasan, M. J. Shuster, M. W. Horn, A. M. Andrews, and P. S. Weiss, Journal of Nanoparticle Research, 10:1231-1240 (2008) (AbstractPDF).
  • Biospecific recognition of tethered small molecules diluted in self-assembled monolayers. M. J. Shuster, A. Vaish, M. E. Szapacs, M. E. Anderson, P. S. Weiss, and A. M. Andrews, Advanced Materials, 20:164-167 (2008) (AbstractPDF).
  • Brain-derived neurotrophic factor-deficient mice exhibit a hippocampal hyperseotonergic phenotype. B. P. Guiard, D. L. David, T. Deltheil, F. Chenu, E. L. Maitre, T. Renoir, I. Lerous-Nicollet, P. Sokoloff, L. Landumey, M. Hamon, A. M. Andrews, R. Hen, and A. M. Gardier, International Journal of Neuropsychophamracology, Jun 11:1-14 (2008) (AbstractPDF).


  • Determining serotonin and dopamine uptake rates using high-speed chronoamperometry. X. A. Perez, A. J. Bressler and A.M. Andrews, in Electrochemical Methods for Neuroscience. A. C. Michael and L. A. Borland, eds., CRC Press LLC, Boca Raton, FL: 103-124(2007) (AbstractFull text).
  • Selecting and driving monolayer structures through tailored intermolecular interactions. T. J. Mullen, A. A. Dameron, A. M. Andrews, and P. S. Weiss, Aldrichimica Acta, 40:21-31 (2007) (PDF).
  • A pharmacological analysis of mice with a targeted disruption of the serotonin transporter. M. A. Fox, A. M. Andrews, J. R. Wendland, K. P. Lesch, A. Holmes, and D. L. Murphy, Psychopharmacology, 195(2):147-66 (2007) (AbstractPDF).
  • Scanning electron microscopy of nanoscale chemical patterns. C. Srinivasan, T. J. Mullen, J. N. Hohman, M. E. Anderson, A. A. Dameron, A. M. Andrews, E. C. Dickey, M. W. Horn, and P. S. Weiss, ACS Nano,1:191-201 (2007) (AbstractPDF).
  • Reduced BDNF is associated with a loss of serotonergic innervation in the hippocampus of aging mice. B. A. Luellen, L. E. Bianco, L. M. Schneider, and A. M. Andrews, Genes, Brain and Behavior, 6:482-490 (2007) (AbstractPDF).
  • Microcontact insertion printing. T. J. Mullen, C. Srinivasan, J. N. Hohman, S. D. Gillmor, M. J. Shuster, M. W. Horn, A. M. Andrews, and P.S. Weiss, Applied Physics Letters, 90:063114-063117 (2007) (AbstractPDF).


  • Radical-induced degradation of liposome-encapsulated microtubules as a model of axonal damage due to oxidative stress. A. E. Counterman, T. G. D’Onofrio, A. M. Andrews, and P. S. Weiss, Proceedings of the National Academy of Sciences, USA, 103:5262-5266 (2006) (AbstractPDF).
  • Filtration disrupts synaptosomes during radiochemical analysis of serotonin uptake: Comparison with chronoamperometry in SERT knockout mice. X. A. Perez, L. E. Bianco, and A. M. Andrews, Journal of Neuroscience Methods , 154:245-255 (2006) (AbstractPDF).
  • The neurotoxin 2′-NH2-MPTP degenerates serotonin axons and evokes increases in hippocampal BDNF. B. A. Luellen, M. E. Szapacs, C. K. Materese, and A. M. Andrews, Neuropharmacology, 50:297-308 (2006) (AbstractPDF).
  • Locomotor hyperactivity and alterations in dopamine neurotransmission are associated with overexpression of A53T mutant human -synuclein in mice, E. L. Unger, D. Eve, X. A. Perez, D. K. Reichenbach, Y. Xu, M. K. Lee, and A. M. Andrews, Neurobiology of Disease, 21:431-443 (2006) (AbstractPDF).


  • Altered serotonin synthesis, turnover and dynamic regulation in multiple brain regions of mice lacking the serotonin transporter. D.K. Kim, T. J. Tolliver, S. J. Huang, B. J. Martin, A. M. Andrews, C. Wichems, A. Holmes, K. P. Lesch, and D. L. Murphy, Neuropharmacology, 49:798-810 (2005) (AbstractPDF).
  • Chronoamperometry to determine differential reductions in uptake in brain synaptosomes from serotonin transporter knockout mice . X. A. Perez and A. M. Andrews, Analytical Chemistry 77:818-826 (2005) (AbstractPDF).


  • Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. T. A. Mathews, D. E. Fedele, F. M. Coppelli, A. L. Avila, D. L. Murphy, and A. M. Andrews, Journal of Neuroscience Methods 140:169-181 (2004) (AbstractPDF).
  • The role of membrane and vesicular monoamine transporters in the neurotoxic and hypothermic effects of 2′-NH2-MPTP. A. L. Numis, E. L. Unger, D. L. Sheridan, A. C. Chisnell, and A. M. Andrews, Molecular Pharmacology , 66:718-727 (2004) (AbstractPDF).
  • Late onset loss of hippocampal 5-HT and NE is accompanied by an increase in BDNF protein expression in mice co-expressing mutant APP and PS1. M. E. Szapacs, A. L. Numis, and A. M. Andrews, Neurobiology of Disease 16:572-580 (2004) (AbstractPDF).
  • Exploring the relationship between serotonin and brain derived neurotrophic factor: Analysis of BDNF protein and extraneuronal 5-HT in mice with reduced serotonin transporter or BDNF expression. M. E. Szapacs, T. A. Mathews, L. Tessarollo, W. E. Lyons, L. A. Mamounas, and A. M. Andrews, Journal of Neuroscience Methods 140:81-92 (2004) (AbstractPDF).


  • Neuronal and astroglial responses to the serotonin and norepinephrine neurotoxin: 1-Methyl-4-(2′-aminophenyl)-1,2,3,6-tetrahydropyridine. B. A. Luellen, D. B. Miller, A. C. Chisnell, D. L. Murphy, J. P. O’Callaghan, and A. M. Andrews, Journal of Pharmacology and Experimental Therapeutics 307:923-931 (2003) (AbstractPDF).


  • 2′-NH2-MPTP (1-Methyl-4-(2′-aminophenyl)-1,2,3,6-tetrahydropyridine) depletes serotonin and norepinephrine in rats: A comparison with 2′-CH3-MPTP (1-Methyl-4-(2′-methylphenyl)-1,2,3,6-tetrahydropyridine). E. L. Unger, P. Mazzola-Pomietto, D. L. Murphy, and A. M. Andrews, Journal of Pharmacology and Experimental Therapeutics 303:527-533 (2002) (AbstractPDF).
  • GAP-43 is critical for normal development of the serotonergic innervation in forebrain. S. L. Donovan, L. A. Mamounas,  A. M. Andrews, M. E. Blue, and J. S. McCasland, Journal of Neuroscience 22:3543-3552 (2002) (AbstractPDF).


  • Genetic perspectives on the serotonin transporter. D. L. Murphy, Q. Li, S. Engel, C. Wichems, A. M. Andrews, K. P. Lesch, and G. Uhl, Brain Research Bulletin 56:487-494 (2001) (AbstractPDF).
  • Molecular mechanisms of cocaine reward: Combined dopamine and serotonin transporter knockouts eliminate cocaine place preference. I. Sora, F. S. Hall, A. M. Andrews, M. Itokawa, X. F. Li, H. B. Wei, C. Wichems, K. P. Lesch, D. L. Murphy, and G. R. Uhl, Proceedings of the National Academy of Science USA 98:5300-5305 (2001) (AbstractPDF).


  • The use of 2′-NH2-MPTP as a tool to probe central serotonin and norepinephrine neurotransmitter systems. A. M. Andrews, Neurotransmissions 16:18-21. (2000) (PDF can be requested directly from anne.andrews[at]


  • Overexpression of human copper/zinc superoxide dismutase in transgenic mice attenuates oxidative stress caused by methylenedioxymethamphetamine (Ecstasy). S. Jayanthi, B. Ladenheim, A. M. Andrews, and J. L. Cadet, Neuroscience 91:1379-1387 (1999)  (AbstractPDF).


  • Brain serotonin neurotransmission: An overview and update with an emphasis on serotonin subsystem heterogeneity, multiple receptors, interactions with other neurotransmitter systems, and consequent implications for understanding the actions of serotonergic drugs. D. L. Murphy, A. M. Andrews, C. H. Wichems, Q. Li, M. Tohda, and B. Greenberg, Journal of Clinical Psychiatry 59:4-12 (1998) (AbstractPDF).
  • Delta opioid peptide [D-Ala2,D-leu5]enkephalin blocks the long-term loss of dopamine transporters induced by multiple administrations of methamphetamine: Involvement of opioid receptors and reactive oxygen species. L. I. Tsao, B. Ladenheim, A. M. Andrews, C. C. Chiueh, J. L. Cadet, and T. P. Su, Journal of Pharmacology and Experimental Therapeutics 287:322-331 (1998) (AbstractPDF).
  • Altered brain serotonin homeostasis and locomotor insensitivity to 3, 4-methylenedioxy-methamphetamine (“Ecstasy”) in serotonin transporter-deficient mice. D. Bengel, D. L. Murphy, A. M. Andrews, C. H. Wichems, D. Feltner, A. Heils, R. Mossner, H. Westphal, and K. P. Lesch, Molecular Pharmacology 53:649-655 (1998) (AbstractPDF).


  • Cellular localization and expression of the serotonin transporter in mouse brain. D. Bengel, O. Jhren, A. M. Andrews, A. Heils, R. Mner, G. L. Sanvitto, J. M. Saavedra, K. P. Lesch, and D. L. Murphy, Brain Research 778:338-345 (1997) (AbstractPDF).
  • Gene structure and 5′-flanking regulatory region of the murine serotonin transporter. D. Bengel, A. Heils, S. Petri, M. Seemann, K. Glatz, A. M. Andrews, D. L. Murphy, and K. P. Lesch, Brain Research Molecular Brain Research 44:286-292 (1997) (AbstractPDF).


  • Differential reinforcing effects of cocaine and GBR-12909: Biochemical evidence for divergent neuroadaptive changes in the mesolimbic dopaminergic system. S. R. Tella, B. Ladenheim, A. M. Andrews, S. R. Goldberg, and J. L. Cadet, Journal of Neuroscience 16:7416-7427 (1996) (AbstractPDF).
  • Transgenic mice with high levels of superoxide dismutase activity are protected from the neurotoxic effects of 2′-NH2-MPTP on serotonergic and noradrenergic nerve terminals. A. M. Andrews, B. Ladenheim, C. J. Epstein, J. L. Cadet, and D. L. Murphy, Molecular Pharmacology 50:1511-1519 (1996) (AbstractPDF).


  • Fluoxetine and desipramine selectively attenuate 2′-NH2-MPTP-induced depletions in serotonin and norepinephrine. A. M. Andrews and D. L. Murphy, European Journal of Pharmacology 250:215-221 (1993) (AbstractPDF).
  • 2′-NH2-MPTP in Swiss Webster mice: Evidence for long term (six month) depletions in cortical and hippocampal 5-HT and NE, differential protection by selective uptake inhibitors or clorgyline, and functional changes in central 5-HT neurotransmission. A. M. Andrews and D. L. Murphy, Journal of Pharmacology and Experimental Therapeutics 267:1432-1439 (1993) (AbstractPDF).
  • Sustained depletion of cortical and hippocampal serotonin and norepinephrine but not striatal dopamine by 1-methyl-4-(2′-aminophenyl)-1,2,3,6-tetrahydropyridine (2′-NH2-MPTP): A comparative study with 2′-CH3-MPTP and MPTP. A. M. Andrews and D. L. Murphy, Journal of Neurochemistry 60:1167-1170 (1993) (AbstractPDF).
  • More Publications »