Nelson, Hosea

WebsiteHome URL
Associate Professor

Contact Information

Molecular Sciences 3515
Molecular Sciences 3221, 3221A, 3225, and 3426

Short Biography

Prof. Nelson earned a B.S. in Chemistry from University of California at Berkeley in 2004 and a  Ph.D. from the California Institute of Technology in 2012. After postdoctoral training at University of California at Berkeley, Prof. Nelson joined the UCLA faculty in 2015.

Research Interests

Broadly speaking, Prof. Nelson’s research program is focused on the development of enabling technologies for chemical synthesis and biology. His group will achieve this goal through two primary avenues of research.

Target-Driven Organic Synthesis:

 As both an inspiration for the development of new organic methodology and as a means to proactively contribute to the development of medicines, the Nelson Group will pursue the synthesis of bioactive complex molecules. Targets will be selected based on their biological activity and syntheses will be designed with a focus on modularity and efficiency.  Ultimately, through synthetic activities and collaborations, we hope to develop small molecules that will be widely utilized by practitioners of medicine and biology.

Reaction Development:

As a means to expand the methodology available to synthetic chemists, efforts to discover new concepts in catalysis and novel chemical transformations will be undertaken.   We are specifically interested in developing supramolecular organometallic catalysts that enable challenging stereoselective transformations.  Furthermore, the development of methodologies that rely on the catalysis of earth-abundant main group elements and base metals will be pursued.



19.  Vinyl Carbocations Generated under Basic Conditions and Their Intramolecular C–H Insertion Reactions  Wigman, B.; Popov, S.; Bagdasarian, A. L.; Shao, B.; Benton, T. R.; Williams, C. G.; Fisher, S. P.; Lavallo, V.; Houk, K. N.; Nelson, H. M. J. Am. Chem. Soc. 2019, 141, 9140–9144.
18. Characterization of reactive organometallic species via MicroED  Jones, C. G.; Asay, M.; Kim, L. J.; Kleinsasser, J. F.; Saha, A.; Fulton, T. J.; Berkly, K. R.; Cascio, D.; Malyutin, A. G.; Conley, M. P.; Stoltz, B. M.; Lavallo, V.; Rodriguez, J. A.; Nelson, H. M. ACS Cent. Sci. 2019, 5, 1507–1513.
17. Regulating Transition Metal Catalysis Through Interference by Short RNAs  Green, S. A.; Montgomery, H. R.; Benton, T. R.; Chan, N. J.; Nelson, H. M. Angew. Chem. Int. Ed. 2019, 58,16400–16404.
16. Nonclassical Applications of closo-Carborane Anions: From Main Group Chemistry and Catalysis to Energy Storage  Fisher, S. P.; Tomich, A. W.; Lovera, S. O.; Kleinsasser, J. F.; Guo, J.; Asay, M. J.; Nelson, H. M.; Lavallo, V. Chem. Rev. 2019, 119, 8262–8290.
15. A Concise Total Synthesis of (±)-Vibralactone  Nistanaki, S. K.; Boralsky, L. A.; Pan, R. D.; Nelson, H. M. Angew. Chem. Int. Ed. 2019, 58, 1724–1726.
14. The CryoEM method MicroED as a powerful tool for small molecule structure determination Jones, C. G.; Martynowycz, M. W.; Hattne, J.; Fulton, T. J.; Stoltz, B. M.; Rodriguez, J. A.; Nelson, H. M.; Gonen, T. ACS Cent. Sci. 2018, 4, 1587–1592.  
13. Teaching an old carbocation new tricks: Intermolecular C–H insertion reactions of vinyl cations  Popov, S.; Shao, B.; Bagdasarian, A. L.; Benton, T. R.; Zhou, L.; Yang, Z.; Houk, K. N.; Nelson, H. M. Science 2018, 361, 381-387.
12. Arylation of Hydrocarbons Enabled by Organosilicon Reagents and Weakly Coordinating Anions  Shao, B.‡;  Bagdasarian, A. L.‡; Popov, S.; Nelson, H. M. Science 2017, 355, 1403–1407. 
11. Enantioselective Heck–Matsuda Arylations through Chiral Anion Phase-Transfer of Aryl Diazonium Salts  Avilan C. M.; Patel, J. S.; Reddi, Y.; Saito, M.; Nelson, H. M.; Shunatona, H. P.; Sigman, M. S.; Sunoj, R. B.; Toste, F. D. Angew. Chem. Int. Ed. 2017, 56, 1–7.
10. Enantioselective 1,1-Arylborylation of Alkenes: Merging Chiral Anion Phase Transfer with Pd Catalysis  Nelson, H. M.‡; Williams, B. D.‡; Miró, J.; Toste, F. D. J. Am. Chem. Soc. 2015, 137, 3213–3216.
9. The Total Syntheses of Basiliolide C, epi-Basiliolide C, and Protecting-Group-Free Total Syntheses of Transtaganolides C and D  Gordon, J. R.; Nelson, H. M.; Virgil, S. C.; Stoltz, B. M.  J. Org. Chem. 2014, 79, 9740–9747.
8. Enantioselective α-Amination Enabled by a BINAM-Derived Phase-Transfer Catalyst  Nelson, H. M.‡; Patel, J. S.‡; Shunatona, H. P.; Toste, F. D. Chem. Sci. 2015, 6, 170–173.
7. Chiral Anion Phase-Transfer of Aryldiazonium Cations: An Enantioselective Synthesis of C3-Diazenated Pyrroloindolines  Nelson, H. M.; Reisberg, S. H.; Shunatona, H. P.; Patel, J. S.; Toste, F. D. Angew. Chem. Int. Ed. 2014, 53, 5600–5603.
6. Selective Nucleic Acid Capture With Shielded Covalent Probes  Vieregg, J. R.; Nelson, H. M.; Stoltz, B. M.; Pierce, N. A. J. Am. Chem. Soc. 2013, 135, 9691–9699.
5. Total Syntheses of (–)-Transtaganolide A, (+)-Transtaganolide B, (+)-Transtaganolide C, and (–)-Transtaganolide D and Biosynthetic Implications  Nelson, H. M.; Gordon, J. R.; Virgil, S. C.; Stoltz, B. M. Angew. Chem. Int. Ed. 2013, 52, 6699–6703.
4. A General Approach to the Basiliolide/Transtaganolide Natural Products: Total Syntheses of Basiliolide B, epi-8-Basiliolide B, Transtaganolide C, and Transtaganolide D  Nelson, H. M.; Murakami, K.; Virgil, S. C.; Stoltz, B. M. Angew. Chem., Int. Ed. 2011, 50, 3688–3691.
3. Progress Toward the Synthesis of the Transtaganolide/Basiliolide Natural Products: An Ireland-Claisen Approach  Nelson, H. M.; Stoltz, B. M. Tetrahedron Lett.  2009, 50, 1699–1701.
2. Side Chain Chemistry Mediates Backbone Fragmentation in Hydrogen Deficient Peptide Radicals  Sun, Q.; Nelson, H. M.; Ly, T.; Stoltz, B. M.; Julian, R. R.  J. Proteome Res. 2009, 8, 958–966.
1. Progress toward the Synthesis of the Basiliolides and Transtaganolides: An Intramolecular Pyrone Diels-Alder Entry into a Novel Class of Natural Products  Nelson, H. M.; Stoltz, B. M. Org. Lett. 2008, 10, 25–28.


1.     Nelson, H. M.; Murakami, K.; Gordon, J. R.; Virgil, S. C.; Stoltz, B. M. “Synthetic transtaganolide and basiliolide products, derivatives thereof, and synthesis methods,” United States Patent US 13/353314, 2012.