Caram, Justin

WebsiteHome URL
Assistant Professor

Contact Information

Young Hall 3077A or 3077B

Short Biography

Professor Caram was born in Allentown, Pennsylvania. After high school, Prof. Caram attended Harvard, conducting research with Professors Jim Anderson, studying trace atmospheric radicals, and Vinny Manoharan studying self-assembled colloidal nanoclusters.  He went on to do a PhD at the University of Chicago with Greg Engel, studying quantum coherence using multidimensional spectroscopies.

At the completion of his PhD program, he took up residence at MIT, bridging the chemistry and engineering departments as the Bob Silbey Memorial Postdoc for the MIT-Harvard Center for Excitonics.   Prof. Caram studies photophysics of nanomaterials supramolecular structures, developing novel spectroscopies which exploit the detection and timing of individual photons. 


Research Interest

Prof. Caram's research leverages the detection, sorting, and timing of individual photons to unravel heterogeneity, complex chemical processes, and energy flow in nanomaterial and biological systems. His research combines time correlated single photon counting (TCSPC) and path length interferometry to develop new spectroscopies that probe chemical systems across the visible and shortwave infrared. The scope of his research extends to the influence of energetic disorder on optoelectronic materials and the complex chemistry of oxidative stress. His research has broad applications,from creating efficient light harvesting materials to understanding disease modalities.

Caram Group Web Site >>


[ Selected Publications ]

  • J. A. Carr, D. Franke, J. R. Caram, C. F. Perkinson, V. Askoxylakis, M. Datta, D. Fukumura, R. K. Jain, M. G. Bawendi, O. T. Bruns. “Shortwave Infrared Fluorescence Imaging with the Clinically Approved Near-Infrared Dye Indocyanine green” Biorxiv
  • J. R. Caram, S. N. Bertram, H. Utzat, W. R. Hess, J. A. Carr, T. S. Bischof, A. P. Beyler, M. G. Bawendi ,”PbS Nanocrystal Emission is Governed by Multiple Emissive States.” Nano Lett., 2016, 16 (10), pp 6070–6077
  • J. R. Caram, S. Doria, D. M. Eisele, T. Sinclair, S. Lloyd, M. G. Bawendi, “Room Temperature Micron-Scale Exciton Migration in a Stabilized Emissive Molecular-Aggregate.” Nano Lett., 2016, 16 (11), pp 6808–6815
  • T.S. Bischof, J. R. Caram, A.P. Beyler M. G. Bawendi,”Extracting the average single-molecule photoluminescence lifetime from an solution of chromophores” Optics Letters 2016 41 (20) pp. 4823-4826
  • I. Coropceanu, A. Rosinelli, J.R. Caram F. S. Freyria, M. G. Bawendi, Variable Thickness CdSe/CdS Nanorods with Unity Fluorescence Quantum Efficiency. ACS Nano 2016, 10 (3), 3295–3301
  • Thesis: “Dynamics of Electronic States Embedded in Complex Environments” Published 2014.
  • H. Zheng,* J.R. Caram,* P.D. Dahlberg, B.S. Rolczynski, S. Viswanathan, D.S. Dolzhnikov, A. Khadivi, D.V. Talapin, G.S. Engel. Dispersion-Free Continuum Two-Dimensional Electronic Spectrometer. Applied Optics, 53, 19091917 (2014). *Co first authors
  • J.R. Caram, H. Zheng, P.D. Dahlberg, B.S. Rolczynski, G.B. Griffin, D.S. Dolzhnikov, D.V. Talapin, G.S. Engel. Exploring size and state dynamics in CdSe quantum dots using two-dimensional electronic spectroscopy. J. Chem .Phys., 140, 084701 (2014)
  • J.R. Caram, H. Zheng, P.D. Dahlberg,B.S. Rolczynski, G.B. Griffin, A.F. Fidler, D.S. Dolzhnikov, D.V. Talapin, G.S. Engel. Persistent Interexcitonic Quantum Coherence in CdSe Quantum Dots. J. Phys. Chem. Lett., 5, 196-204 (2014).
  • P.D. Dahlberg, A.F. Fidler, J.R. Caram, P.D. Long, G.S. Engel, “Energy Transfer Observed In Live Cells Using Two-Dimensional Electronic Spectroscopy.” J. Phys. Chem. Lett., 4, 3636-3640 (2013).
  • K.A. Fransted, J.R. Caram, D. Hayes, G.S. Engel, “Two-Dimensional Electronic Spectroscopy of Bacteriochlorophyll a in Solution: Elucidating the Coherence Dynamics of the FennaMatthews-Olson Complex Using its Chromophore as a Control.” J. Chem. Phys., 137, 125101 (2012).
  • J.R. Caram, A.F. Fidler, G.S. Engel, “Excited and Ground State Vibrational Dynamics Revealed by Two Dimensional Electronic Spectroscopy.” J. Chem. Phys., 137, 024507 (2012). 20 most read in 2012 and Editors Choice 2012
  • A.F. Fidler, J.R. Caram, D. Hayes, G.S. Engel, “Toward a Coherent Picture of Excitonic Coherence in the Fenna-Matthews-Olson Complex.” J. Phys. B, 45, 154013 (2012).
  • J.R. Caram, N.H.C. Lewis, A.F. Fidler, G.S. Engel , “Signatures of Correlated Excitonic Dynamics in Two Dimensional Spectroscopy of the Fenna-Matthew-Olson Photosynthetic Complex.” J. Chem. Phys., 136, 104505 (2012). Selected for Virtual Journal of Biological Physics
  • J.R. Caram, G.S. Engel , “Extracting Dynamics of Excitonic Coherences in Congested Spectra of Photosynthetic Light Harvesting Antenna Complexes.” Faraday Discuss., 153(1), 93-104 (2011).
  • G. Panitchayangkoon, D.V. Voronine, D. Abramavicius, J.R. Caram, N. Lewis, S. Mukamel, G.S. Engel, “Direct Evidence of Quantum Transport in Photosynthetic Light-harvesting Complexes.” Proc. Natl. Acad. Sci.,108(52), 20908-20912 (2011).
  • D. Hayes, G. Panitchayangkoon, K.A. Fransted, J.R. Caram, J. Wen, K.F. Freed, G.S. Engel, “Dynamics of Electronic Dephasing in the Fenna-Matthews-Olson Complex.” New J. Phys, 12, 065042 (2010).
  • G. Panitchayangkoon, D. Hayes, K.A. Fransted, J.R. Caram, E. Harel, J. Wen, R.E. Blankenship, G.S. Engel, “Long-Lived Quantum Coherence in Photosynthetic Complexes at Physiological Temperature.” Proc. Natl. Acad. Sci., 107:29, 12766-12770, (2010).