

Abstract: Due to a delocalization of electron density, polyhedral boron clusters are often described as three-dimensional analogues of planar aromatic molecules such as benzene. Despite this electronic similarity, boron clusters can have drastically different chemical and physical properties compared to their carbon-based counterparts. In particular, our group studies the twelve vertex-containing boron cluster dodecaborate—[B_{12}H_{12}]^{2−}—as a synthetic building block whose chemical reactivity and electrochemical behavior can be rationally modified by substituting the B-H vertices on the periphery of the cluster with various reactive functional groups. I will discuss the synthesis, chemical properties, and structure/bonding considerations pertaining to these derivatized B_{12} clusters, as well as potential applications relevant to the fields of materials science and energy storage.

INORGANIC CHEMISTRY STUDENT EXIT SEMINAR

Austin Ready
Spokoyny Group

“Boron Clusters as Robust Building Blocks for the Expansion of Carbon-Based Chemistry”

Wednesday, November 29th, 2023
4:00 p.m. | YH4222 – Dongwon Collaboratory Yoo Seminar & Conference Hall