Abstract: Polyphosphorus units are an important class of compound and isolobal to carbon-based relatives. Because of the lone pairs at the phosphorus atoms, the five-fold symmetric cyclo-P$_5$ ring of the pentaphosphaferrocenes [Cp8Fe(η$_5$-P$_5$)] enables the use of these complexes in unique supramolecular aggregations with Lewis acidic transition metal moieties to form unprecedented giant spherical molecules (Figure 1, left). Moreover, they represent sandwich complexes with a flexible redox and substitution behavior (Figure 1, right-top and center), different from the one of the carbon-based analogue ferrocene. The talk will compare similarities and differences between P- and C-based compounds and show some advantages of the former ones. Furthermore, the use of alternative reagents to synthesize such powerful starting materials of polypnicogen complexes and other surprising compounds will be presented (Figure 1, right bottom).

Figure 1. Versatile reactivity of [Cp8Fe(η$_5$-P$_5$)]; left) giant supramolecular sphere; right top) redox reactions; center bottom) product of a nucleophilic attack; right bottom) arsa-sila-benzene.