INORGANIC CHEMISTRY SEMINAR

Dr. Jesse L. Peltier
Department of Chemistry, University of California, Berkeley

“Cyclic (alkyl)(amino)carbenes: from Replacing Metals to Metal Replacement”

Abstract: Stable singlet carbenes are flourishing with a diversity of applications: from ligands in catalysis to the stabilization of otherwise unisolable chemical species. Here, I will showcase the diverse and rich chemistry of cyclic (alkyl)(amino)carbenes (CAACs), a class of stable singlet carbenes known for their high ambiphilic character. Deviating from typical carbene-organocatalysis, which is still dominated by Lewis basic carbenes, I will demonstrate that CAACs allow for the catalytic valorization of carbon monoxide, a small molecule known for its inertness. I will explain how the intrinsic properties of CAACs, carbenes known to mimic the electronic properties of transition metals, enable this traditionally transition metal catalyzed process. Afterward, I will discuss a methodology to achieve the absolute templating of coinage metal clusters by means of galvanic metal replacement. Interestingly, clusters, as opposed to larger nanomaterials, have broadly displayed the opposite process, anti-galvanic exchange (AGR). This can be attributed to a lack of stable active metal clusters and a lack of strong M⁰ character in existing ones. To access low-valent active metal clusters, I will illustrate how CAACs’ ambiphilicity can be exploited to stabilize these highly reactive species and achieve the complete galvanic exchange in metal clusters. Going a step further, I will discuss how these molecular models allowed us to better understand the reactivity of M(111) surfaces further delineating the intermediacy of clusters between homogenous and heterogeneous processes.

Wednesday, September 29th 2021

4:00 p.m. | Via Zoom

More information: jzabala@chem.ucla.edu