Theoretical Chemistry Seminar - Predicting and Controlling Correlated Light-Matter Interactions - Prof. Prineha Narang, Harvard University

Seminar series
Other
When
Tue, Feb 16 12:00pm to 1:00pm
Where
Zoom - To acquire link email nikkie@chem.ucla.edu
Speaker Professor Prineha Narang
Harvard University
School of Engineering and Applied Sciences
Description

Predicting and Controlling Correlated Light-Matter Interactions

Quantum systems host spectacular excited-state effects, but many of these phenomena remain challenging to control and, consequently, technologically under-explored. My research, therefore, focuses on how quantum systems behave, particularly away from equilibrium, and how we can harness these effects1. By creating predictive approaches to study dynamics, decoherence and photo-induced correlations in molecules and matter, our work could enable technologies that are inherently more powerful than their classical counterparts ranging from quantum information science, to ultra-high efficiency optoelectronic and energy conversion systems. In this talk, I will present work from my research group on describing, from first principles approaches, the microscopic dynamics, decoherence and optically-excited collective phenomena at finite temperature to quantitatively link predictions with 3D atomic-scale imaging, quantum spectroscopy, and macroscopic behavior. Capturing these dynamics poses unique theoretical and computational challenges. The simultaneous contribution of processes that occur on many time and length-scales have remained elusive for state-of-the-art calculations and model Hamiltonian approaches alike, necessitating the development of new methods in theoretical and computational quantum chemistry 2–4. I will introduce our work at the intersection of ab initio cavity quantum-electrodynamics and electronic structure methods to treat electrons, photons and phonons on the same quantized footing, accessing new observables in strong light-matter coupling. Building on this, I will show selected examples of our approach in ab initio design of active defects in quantum materials leveraging the chemical degree-of-freedom5–7 towards selectively linking these active defects 8–10. Finally, I will present an outlook on driving quantum chemical systems far out-of-equilibrium to control the coupled electronic and vibrational degrees-of-freedom 11–13.

 

References:

1.     Head-Marsden, K., Flick, J., Ciccarino, C. J. & Narang, P. Quantum Information and Algorithms for Correlated Quantum Matter. Chem. Rev. (2020) doi:10.1021/acs.chemrev.0c00620.

2.     Rivera, N., Flick, J. & Narang, P. Variational Theory of Nonrelativistic Quantum Electrodynamics. Phys. Rev. Lett. 122, 193603 (2019).

3.     Flick, J., Rivera, N. & Narang, P. Strong light-matter coupling in quantum chemistry and quantum photonics. Nanophotonics 7, 1479–1501 (2018).

4.     Flick, J. & Narang, P. Cavity-Correlated Electron-Nuclear Dynamics from First Principles. Physical Review Letters vol. 121 (2018).

5.     Narang, P., Ciccarino, C. J., Flick, J. & Englund, D. Quantum Materials with Atomic Precision: Artificial Atoms in Solids: Ab Initio Design, Control, and Integration of Single Photon Emitters in Artificial Quantum Materials. Adv. Funct. Mater. 29, 1904557 (2019).

6.     Hayee, F. et al. Revealing multiple classes of stable quantum emitters in hexagonal boron nitride with correlated optical and electron microscopy. Nat. Mater. 19, 534–539 (2020).

7.     Ciccarino, C. J. et al. Strong spin–orbit quenching via the product Jahn–Teller effect in neutral group IV qubits in diamond. npj Quantum Materials 5, 75 (2020).

8.     Neuman, T., Wang, D. S. & Narang, P. Nanomagnonic Cavities for Strong Spin-Magnon Coupling and Magnon-Mediated Spin-Spin Interactions. Phys. Rev. Lett. 125, 247702 (2020).

9.     Wang, D. S., Neuman, T. & Narang, P. Dipole-coupled emitters as deterministic entangled photon-pair sources. Phys. Rev. Research 2, 043328 (2020).

10.   Neuman, T. et al. A Phononic Bus for Coherent Interfaces Between a Superconducting Quantum Processor, Spin Memory, and Photonic Quantum Networks. arXiv [quant-ph] (2020).

11.   Juraschek, D. M., Meier, Q. N. & Narang, P. Parametric Excitation of an Optically Silent Goldstone-Like Phonon Mode. Physical Review Letters vol. 124 (2020).

12.   Juraschek, D. M., Narang, P. & Spaldin, N. A. Phono-magnetic analogs to opto-magnetic effects. Phys. Rev. Research 2, 043035 (2020).

13.   Juraschek, D. M., Neuman, T., Flick, J. & Narang, P. Cavity control of nonlinear phononics. arXiv [cond-mat.mtrl-sci] (2019).